Motions of the fingers subdomain of klentaq1 are fast and not rate limiting: implications for the molecular basis of fidelity in DNA polymerases.
نویسندگان
چکیده
Various kinetic studies on nucleotide incorporation by DNA polymerases have established that a rate-limiting step occurs that is crucial in the mechanism of discrimination between correct versus incorrect nucleotide. Crystallographic studies have indicated that this step may be due to a large open-to-closed conformational transition affecting the fingers subdomain. However, there is no direct evidence to support this hypothesis. In order to investigate whether or not the open-to-closed conformational transition affecting the fingers subdomain is rate limiting, we have developed a fluorescence resonance energy transfer (FRET) system, which monitors motions of the fingers subdomain. We establish that the closing of the fingers subdomain is significantly faster than the kinetically determined rate-limiting step. We propose that the rate-limiting step occurs after the closing of the fingers subdomain and is caused by local reorganization events in the active site.
منابع مشابه
A pre-equilibrium before nucleotide binding limits fingers subdomain closure by Klentaq1.
Numerous studies have been undertaken to establish the mechanism of dNTP binding and template-directed incorporation by DNA polymerases. It has been established by kinetic experiments that a rate-limiting step, crucial for dNTP selection, occurs before chemical bond formation. Crystallographic studies indicated that this step may be due to a large open-to-closed conformational transition affect...
متن کاملReal-time single-molecule studies of the motions of DNA polymerase fingers illuminate DNA synthesis mechanisms
DNA polymerases maintain genomic integrity by copying DNA with high fidelity. A conformational change important for fidelity is the motion of the polymerase fingers subdomain from an open to a closed conformation upon binding of a complementary nucleotide. We previously employed intra-protein single-molecule FRET on diffusing molecules to observe fingers conformations in polymerase-DNA complexe...
متن کاملA unified kinetic mechanism applicable to multiple DNA polymerases.
After extensive studies spanning over half a century, there is little consensus on the kinetic mechanism of DNA polymerases. Using stopped-flow fluorescence assays for mammalian DNA polymerase beta (Pol beta), we have previously identified a fast fluorescence transition corresponding to conformational closing, and a slow fluorescence transition matching the rate of single-nucleotide incorporati...
متن کاملSubtle but variable conformational rearrangements in the replication cycle of Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) may accommodate lesion bypass.
The possible conformational changes of DNA polymerase IV (Dpo4) before and after the nucleotidyl-transfer reaction are investigated at the atomic level by dynamics simulations to gain insight into the mechanism of low-fidelity polymerases and identify slow and possibly critical steps. The absence of significant conformational changes in Dpo4 before chemistry when the incoming nucleotide is remo...
متن کاملInsight into the catalytic mechanism of DNA polymerase beta: structures of intermediate complexes.
The catalytic reaction mediated by DNA polymerases is known to require two Mg(II) ions, one associated with dNTP binding and the other involved in metal ion catalysis of the chemical step. Here we report a functional intermediate structure of a DNA polymerase with only one metal ion bound, the DNA polymerase beta-DNA template-primer-chromium(III).2'-deoxythymidine 5'-beta,gamma-methylenetriphos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular cell
دوره 19 3 شماره
صفحات -
تاریخ انتشار 2005